f07 — Linear Equations (LAPACK) f07gve

1

NAG C Library Function Document

nag_zpprfs (f07gvc)

Purpose

nag_zpprfs (f07gvc) returns error bounds for the solution of a complex Hermitian positive-definite system
of linear equations with multiple right-hand sides, AX = B, using packed storage. It improves the
solution by iterative refinement, in order to reduce the backward error as much as possible.

2

Specification

void nag_zpprfs (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer nrhs,

3

const Complex ap[], const Complex afp[], const Complex b[], Integer pdb,
Complex x[], Integer pdx, double ferr[], double berr[], NagError *fail)

Description

nag_zpprfs (f07gvc) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex Hermitian positive-definite system of linear equations with multiple right-hand sides
AX = B, using packed storage. The function handles each right-hand side vector (stored as a column of
the matrix B) independently, so we describe the function of nag zpprfs (f07gvc) in terms of a single right-
hand side b and solution z.

Given a computed solution x, the function computes the component-wise backward error B. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

(A+8A) = b+ 6b
|6a;j| < Bla;;| and [6b;| < B[by].

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |z; — Z;|/ max |z,
1 1

where z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint. order = Nag_RowMajor or Nag_ColMajor.

uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A has been
factorized, as follows:

[NP3645/7] f07gve. 1

f07gve NAG C Library Manual

if uplo = Nag_Upper, then the upper triangular part of A is stored and A is factorized as
UHU, where U is upper triangular;

if uplo = Nag_Lower, then the lower triangular part of A is stored and A is factorized as
LL", where L is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

5: ap[dim| — const Complex Input
Note: the dimension, dim, of the array ap must be at least max(l,n x (n+1)/2).
On entry: the n by n original Hermitian positive-definite matrix A as supplied to nag zpptrf
(f07grc).

6: afp[dim] — const Complex Input
Note: the dimension, dim, of the array afp must be at least max(l,n x (n+1)/2).

On entry: the Cholesky factor of A stored in packed form, as returned by nag zpptrf (f07grc).

7: b[dim] — const Complex Input

Note: the dimension, dim, of the array b must be at least max(l,pdb x nrhs) when
order = Nag_ColMajor and at least max(1,pdb x n) when order = Nag_ RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix B is stored in b[(i — 1) x pdb + j — 1].

On entry: the n by r right-hand side matrix B.

8: pdb — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.
Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag_RowMajor, pdb > max(1, nrhs).
9: x[dim] — Complex Input/Output

Note: the dimension, dim, of the array x must be at least max(l,pdx x nrhs) when
order = Nag_ColMajor and at least max(1, pdx x n) when order = Nag RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix X is stored in x[(j — 1) x pdx +4 — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + j — 1].

On entry: the n by r solution matrix X, as returned by nag_zpptrs (f07gsc).

On exit: the improved solution matrix X.

10: pdx — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

f07gve.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07gve

11:

Constraints:

if order = Nag_ColMajor, pdx > max(1,n);

if order = Nag_RowMajor, pdx > max(1, nrhs).
ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).

On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,... 7

12 berr[dim]| — double Output
Note: the dimension, dim, of the array berr must be at least max(1, nrhs).
On exit: berr[j — 1] contains the component-wise backward error bound [for the jth solution
vector, that is, the jth column of X, for j =1,2,....n.
13: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).
6 Error Indicators and Warnings
NE_INT
On entry, n = (value).
Constraint: n > 0.
On entry, nrhs = (value).
Constraint: nrhs > 0.
On entry, pdb = (value).
Constraint: pdb > 0.
On entry, pdx = (value).
Constraint: pdx > 0.
NE_INT 2

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = (value).
Constraint: pdx > max(1, nrhs).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

[NP3645/7] f07gve.3

f07gve NAG C Library Manual

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n” real floating-

point operations. Each step of iterative refinement involves an additional 24n? real operations. At most 5
steps of iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Az = b;

the number is usually 5 and never more than 11. FEach solution involves approximately 8n® real
operations.

The real analogue of this function is nag_dpprfs (f07ghc).

9 Example

To solve the system of equations AX = B using iterative refinement and to compute the forward and
backward error bounds, where

3.23 4 0.00¢ 1.51 —1.92¢ 1.90 + 0.84¢ 0.42 +2.50¢
1.51 +1.92¢ 3.584+0.000 —-0.23+1.11: —-1.18+1.37:
190 -0.84¢ —-0.23—-1.11z 4.09+0.00: 2.33 —0.142
042 -2500 —-1.18—-137¢ 233+0.145 4.2940.00:

A:

and
393 — 6.14¢ 148 + 6.58:
B 6.17 + 942 465 — 4.75:
|l =717 — 2183 —491 + 2.29;
1.99 — 14.38; 7.64 — 10.79:

Here A is Hermitian positive-definite, stored in packed form, and must first be factorized by nag_zpptrf
(f07grc).

9.1 Program Text

/* nag_zpprfs (£07gvc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer i, j, n, nrhs, ap_len, afp_len;
Integer Dberr_len, ferr_len, pdb, pdx;
Integer exit_status=0;
NagError fail;
Nag_UploType wuplo_enum;
Nag_OrderType order;
/* Arrays */
char uplo([2];
Complex *afp=0, *ap=0, *b=0, *x=0;
double *berr=0, *ferr=0;

f07gve.4 [NP3645/7]

f07 — Linear Equations (LAPACK)

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) aplJd*(J-1)/2 + I - 1]
#define A_LOWER(I,J) apl(2*n-J)*(J-1)/2 + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I,J) aplI*(I-1)/2 + J - 1]
#define A UPPER(I,J) apl[(2*n-I)*(I-1)/2 + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define X(I,J) x[(I-1)#*pdx + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf ("f07gvc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*x["\n] ");
Vscanf ("%$1d%1ds*["\n] ", &n, &nrhs);
ap_len = n * (n + 1)/2;
afp_len = n * (n + 1)/2;
berr_len = nrhs;
ferr_len = nrhs;
#ifdef NAG_COLUMN_MAJOR

pdb = n;

pdx = n;
#else

pdb = nrhs;

pdx = nrhs;
#endif

/* Allocate memory */

if (!(afp = NAG_ALLOC(afp_len, Complex)) ||
! (ap = NAG_ALLOC(ap_len, Complex)) ||
1 (b = NAG_ALLOC(n * nrhs, Complex)) |
! (x = NAG_ALLOC(n * nrhs, Complex)) |
! (berr = NAG_ALLOC (berr_1len, double)) ||
L())

ferr = NAG_ALLOC(ferr_len, double)

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file, and copy A to AFP and B to X */
Vscanf (" ' %1s ’'s*x[*\n] ", uplo);
if (*(unsigned char *)uplo == 'L’)
uplo_enum = Nag_Lower;
else if (*(unsigned char #*)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (j = 1i; j <= n; ++3)
Vscanf (" (%1f , %1f)", &A_UPPER(i,]j).re, &A_UPPER(i,])
¥
Vscanf ("sx["\n] ");
3

else

{
for (1 = 1; 1 <= n; ++1)

for (j = 1; j <= i; ++3)

[NP3645/7]

.im) ;

f07gve

f07gve.5

f07gve NAG C Library Manual

Vscanf (" (%1f , %1f)", &A_LOWER(i,j).re, &A_LOWER(i,j).im);

Vséanf("%*[‘\n] ")
foi (i =1; 1 <= n; ++1)
{ for (j = 1; j <= nrhs; ++3)
Vscanf (" (%1f , %1f)", &B(i,j).re, &B(i,J).im);
Vsianf("%*[A\n] ")

for (i =1; i <=n * (n+ 1) / 2; ++1i)
{
afpl[i-1].re = apl[i-1].re;
afp[i-1].im = ap[i-1].im;

for (i = 1; i <= n; ++1i)
for (j = 1; j <= nrhs; ++3j)
X(i,j).re = B(i,j).re;

X(i,3).im = B(i,3).im;

/* Factorize A in the array AFP */
fO07grc(order, uplo_enum, n, afp, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f07grc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute solution in the array X =*/
f07gsc(order, uplo_enum, n, nrhs, afp, x, pdx, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f07gsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Improve solution, and compute backward errors and */
/* estimated bounds on the forward errors */
fO7gvc(order, uplo_enum, n, nrhs, ap, afp, b, pdb, x, pdx, ferr, berr,

&fail) ;
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f07gvc.\n%s\n", fail.message);
exit_status = 1;
goto END;
3

/* Print solution */

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,
Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf ("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++3j)
Vprintf ("$11l.1le%s", berr([j-1]1, Jj%4==0 2"\n":" ");
Vprintf ("\nEstimated forward error bounds (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
Vprintf ("$1l.1le%s", ferr[j-11, j%4==0 2"\n":" ");
Vprintf ("\n") ;
END:
if (afp) NAG_FREE (afp);
if (ap) NAG_FREE(ap);
if (b) NAG_FREE(Db);

f07gve.6 [NP3645/7]

f07 — Linear Equations (LAPACK)

if (x) NAG_FREE (x) ;
if (berr) NAG_FREE (berr);
if (ferr) NAG_FREE (ferr);
return exit_status;

9.2 Program Data

f07gvc Example Program Data

4 2

ILI

(3.23, 0.00)

(1.51, 1.92) (3.58, 0.00)

(1.90,-0.84) (-0.23,-1.11) (4.09, 0.00)

(0.42,-2.50) (-1.18,-1.37) (2.33, 0.14) (4.29, 0.00)
(3.93, -6.14) (1.48, 6.58)

(6.17, 9.42) (4.65, -4.75)

(-7.17,-21.83) (-4.91, 2.29)

(1.99,-14.38) (7.64,-10.79)

9.3 Program Results

fO07gvc Example Program Results

Solution(s)

1 2
1 (1.0000,-1.0000) (-1.0000, 2.0000)
2 (-0.0000, 3.0000) (3.0000,-4.0000)
3 (-4.0000,-5.0000) (-2.0000, 3.0000)
4 (2.0000, 1.0000) (4.0000,-5.0000)
Backward errors (machine-dependent)
3.3e-17 5.6e-17
Estimated forward error bounds (machine-dependent)
5.7e-14 7.2e-14

f07gve

:Values of N and NRHS
:Value of UPLO

:End of matrix A

:End of matrix B

[NP3645/7]

f07gve.7 (last)

	f07gvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	nrhs
	ap
	afp
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

